DOKU – Die Akte Apollo

Anmerkung zu den gefälschten Aufnahmen in einem Filmstudio über die Mondlandung. Ist möglicherweise die Wahrheit hinter der Lüge, jene Wahrheit, die man nicht zeigen konnte, weil man am Mond ganz andere Zustände vorfand, als vermutet? Angeblich existieren am Mond erdähnliche Zustände und die Gravitation des Mondes ist sogar viel höher, als auf der Erde – ein tiefer Fußabdruck wäre dafür sogar wirklich ein Zeugnis, so dieser nicht aus dem Filmstudio stammt.

———————————————-

Uploaded on Oct 6, 2011

Ist die Mondlandung nur ein Fake?

Mondlandung war kein Fake: Nasa veröffentlicht neue Beweise – SPIEGEL TV

Uploaded on Sep 12, 2011

Die US-Raumfahrtbehörde hat neue Aufnahmen der Landestellen der Apollo-Missionen 12, 14 und 17 veröffentlicht. Damit möchte die Nasa Verschwörungstheorien entgegentreten, nach denen die Mondlandungen nie stattgefunden haben sollen.
Abonnieren Sie unseren Kanal: http://www.youtube.com/subscription_c…

——————————————————————————————————————————————————-

Mondlandung Mondlandungslüge Apollo Die Wahrheit über die Mondlandung

——————————————————————————————————————————————————-

Hinterlasse einen Kommentar

4 Kommentare

  1. Siegfried Marquardt

     /  4. Februar 2018

    Mathematisch-physikalische Widerlegung von Apollo 11 bis N

    Aufgrund der Parameter der Saturnrakete konnte Apollo 11 niemals das Schwerefeld der Erde verlassen, um mit der 2. Kosmischen Geschwindigkeit von 11,2 km/s zum Mond zu gelangen. Dies lässt folgende Tabelle 1 und nachfolgende Berechnungen erkennen:

    Tabelle 1: Treibstoffkombinationen der einzelnen Stufen mit den Start- und Leermassen und den effektiven Ausströmgeschwindigkeiten ve der Raketentreibstoffe (Leitenberg, B, 2013 und NASA im Internet 2014).

    Stufe N/Treibstoff Mo t ML t ve m/s Bemerkungen
    1. RP (Kerosin) + O2 2286 135 2600
    2. H2 + O2 490 39 4200/3600 ve ist anzuzweifeln – 3570 sind realistisch; denn es gilt ve= 0,7 *vmax= 5100 m/s *0,7= 3570 m/s
    3. H2 + O2
    + CSM +LM 119 +
    45 13 +
    45 4200/3600 Dto. – 3570 sind realistisch
    ∑ 2945

    Entsprechend der Raketengrundgleichung
    vB= ve * ln (MO: Ml) (1)

    könnte man mit den drei Stufen nach einer Modifikation der Formel (1) theoretisch eine maximale Bahn- und Brennschlussgeschwindigkeit von
    vB= 2,6 km/sln (2940:654) + 3,6 km/s [ln(654:164) + ln (164:58)] ≈ 2,6 km/s1,5 +
    3,6
    km/s (1,4 +1) = 3,9 km/s+ 3,6 km/s*2,4 = 3,9 km/s+ 8,6 km/s = 12,5 km/s (2)

    ohne Berücksichtigung der Gravitation und des Luftwiderstandes erzielen. Für die Gravitation müssen für das Erreichen des Erdorbits in 200 km Höhe mindestens ein Betrag von

    ∆ v= √2*200.000 m *9,5 m/s² = 2000 km/s= 2 km/s (3)

    von den 12,5 km/s abgezogen werden. Und für den Luftwiderstand 0,6 km/s. Dies ergibt Summa Summarum 9,9 km/s. Dieser Betrag liegt signifikant unter dem Wert der Fluchtgeschwindigkeit von 11,2 km/s! Damit konnte Apollo 11 gerade einmal komfortabel den Erdorbit erreichen. Es kommt aber noch schlimmer für Apollo 11: nach Wolff (1966) konnten in den sechziger Jahren höchstens ve von 2600 m/s erzielt werden. Damit konnte Apllo11 mit den deklarierten Parametern der NASA aber damals allerdings nur eine Brennschlussgeschwindigkeit von

    vB= 3,9 km/s+ (2,6* 2,4 km/s) = (3,9 + 6,24) km/s = 10,14 km/s

    erzielen. Zieht man davon die 2,6 km/s ab, die auf die Gravitation und den Luftwiderstand beruhen, dann ergibt sich eine maximale Bahngeschwindigkeit von gerade einmal

    vB= (10,44 – 2,6) = 7,84 km/s. Damit konnte Apollo 11 gerade einmal ganz knapp die Erdumlaufbahn erreichen!

    Nach Sternfeld (1959) sollen nur zwei ca. 14-Tageskonstellationen und ein 60-Tageszenario existieren, um den Mond mit einem künstlichen Raumflugkörper von der Erde aus zu erreichen und auf der Erde wieder zu landen. Unabhängig von den theoretischen Fakten und Details von Sternfeld, benötigte der Forschungssatellit SMART I, der Ende September 2003 gestartet wurde, 49 Tage bis auf die Mondebene und fünf Monate bis die Sonde in die Mondumlaufbahn einmündete. Und die im Dezember 2013 erfolgreich verlaufende Mondexpedition der chinesischen Sonde Chang`e-3 bewies bestechend, dass man mindestens 14 Tage zur Bewältigung der Distanz von der Erde zum Mond benötigt. Damit wäre Apollo 11 bereits eindrucksvoll empirisch widerlegt, weil ein vermeintliches 8-Tagesregime, das angeblich mit Apollo 11 praktiziert und exerziert wurde, astrophysikalisch theoretisch und empirisch überhaupt nicht existiert!
    Die kosmische Strahlung, die auf die Astronauten innerhalb der 8 Tage eingewirkt hätte, wäre absolut infaust gewesen! Denn: Sie hätten je nach gewählter Modellrechnung eine tödliche Strahlendosis von mindestens 11 Sv bis 26 Sv inkorporiert. wenn man in diesem Zusammenhang an die hochenergetische Teilchendichte im Kosmos und an den Partikelstrom der Sonne mit der Solarkonstante von 8,51015 MeV/m²s denkt. Nach Lindner (1973) treffen pro Sekunde auf einen Quadratmeter 1300 Protonen aus dem Kosmos auf die Erdatmosphäre ein. Rechnet man diese Energie auf die 8 Tage währende „Mondmission“ hoch, dann ergäbe sich die gewaltige Strahlendosis von weit über 1000 Sv! Die Astronauten hätten den Flug zum Mond und zur Erde zurück in jedem Falle nicht überlebt, da die absolut tödliche Dosis bei 10 Sv liegt. Damit wäre Apollo 11 und N absolut widerlegt!
    Es fehlten insgesamt über 80 t Raketentreibstoff, um von der Erde zum Mond und von dort wieder zurück zur Erde auf der von der NASA vorgegebenen schleifenförmigen Flugbahn zu gelangen. Dies ergibt folgende Bilanz:
    Für den Einschuss ins All mit 11,2 km/s wären für die 45 t Masse des Kommandoservicemoduls CSM und Lunamodul eine Treibstoffmenge von

    MTr=[1-(1: e(vB/ve))]Mo= [1-(1:2,72 (3,3:3,6))]45 t = (1- 0,4)* Mo≈ 0,6*45 t≈ 27 t (4)

    Erforderlich gewesen. Das Kommandoservicemodul CSM mit dem Mondlandemodul hätte mit einer Geschwindigkeit von 2,4 km/s in die Sphäre des Mondes gelangen müssen. Für das Abbremsen der zweiten kosmischen Geschwindigkeit von 2,4 km/s des Mondes auf die Orbitgeschwindigkeit von 1,6 km/s (∆vB=2,4 km/s-1,7 km/s= 0,7 km/s), wäre eine Treibstoffmasse bei einer effektiven Ausströmgeschwindigkeit von 2,6 km/s von

    MTr= [1 – 1: e(vB/ve)]Mo= [1-1: 2,72 (0,7:2,6)] 45 t = (1- 0,76)* 45 t≈ 0,24*45 t≈ 11 t (5)

    einzukalkulieren. Für die Landung aus einem 100 km-Orbit (+ ca. 0,56 km/s sind für die Wirkung der Schwerkraft des Mondes zusätzlich einzukalkulieren) auf dem Mond wäre bei 15 t der Startmasse Mo des Mondlandemoduls und ∆vB=2,3 km/s eine Treibstoffmasse bei einer effektiven Ausströmgeschwindigkeit von 2,6 km/s von

    MTr=[1 – 1: e(vB/ve)]Mo= [1-1: 2,72 (2,3:2,6)]15 t) = (1- 0,41)*15 t ≈

    0,59*15 t ≈ 9 t (6)

    zu beziffern. Für den Start vom Mond mit der Aufstiegsstufe mit einer Startmasse von 4,7 t benötigt man

    MTr= [1 – 1: e(vB/ve)]Mo= [1-1: 2,72 (2,3:2,6)]4,7 t = (1- 0,41)* 4,7 t= 0,59*4,7 t ≈3 t. (7)

    Treibstoff.

    Um den Rückflug zur Erde antreten zu können, wäre bei einer Masse des CSM von 30 t
    eine Treibstoffmenge von

    MTr=[1 – 1: e(vB/ve)]Mo= [1-1: 2,72 (0,7:2,6)] 30 t (1- 0,76)* 30 t = 0,24*30 t ≈ 7 t (8)

    zu bilanzieren.
    Für die Einmündung in die Erdumlaufbahn mit einer Orbitgeschwindigkeit von 7,9 km/s aus dem Kosmos mit 11, 2 km/s beziffert sich die Treibstoffmenge bei 30 t Mo der Kommandokapsel allgemein auf

    MTr=[1-1: e(vB/ve)]Mo= [1-1: 2,72 (3,1:2,6)]30 t=(1- 0,3)* 30 t ≈ 0,7 * 30 t = 21 t. (9)

    Für den Wiedereintritt in die Erdatmosphäre muss man eine Treibstoffmasse bei einer Masse des CM von 6 t Mo

    MTr= [1 – 1: e(vB/ve)]Mo= [1-1: 2,72 (2:2,6)] 6 t = (1- 0,46) Mo= 0,54*6 t ≈ 3 t. (10)
    in Rechnung zu stellen.

    Die Rekonstruktion des Kommandomoduls mit einer von der NASA vorgegebenen Höhe von 3,23 m und einem Durchmesser von 3,9 m, woraus im Endeffekt nur ein Gesamtvolumen von rund 12,9 m³ resultieren kann, ergab, dass nach Abzug des deklarierten Innenvolumens von 6,23 m³ das Volumen der Außenzelle der Kommandokapsel lediglich ca. 6,7 m³ hätte umfassen können. Bei einer Masse von 5,9 t hätte die Dichte der Kommandokapsel damit nur bei ca. 0,9 liegen müssen. Dies hätte nicht einmal Papier oder Pappe „leisten können“! Eine weitere mathematische Optimierung ergab dann, dass die Außenzelle nur aus einer 2,5 cm starken Aluminiumschicht hätte bestehen können – ohne Hitzeschild. Legt man die Hälfte der Gesamtmasse von 5,9 t für einen Hitzeschild zugrunde, dann hätte der Hitzschild nur aus 2 mm starkem Stahl bestehen können. Ein Kommentar dazu erübrigt sich nahezu: Das Kommandomodul wäre in der Erdatmosphäre mit einer theoretisch berechneten Bremstemperatur von mindestens 45.000 K wie eine Sternschnuppe verglüht!

    Bereits in einer ersten Betrachtungsphase bei der Rekonstruktion der Mondlandefähre entsprechend den NASA-Parametern nach Abzug der vermeintlichen ca. MTr= 10,8 t in Rechnung gestellten Treibstoffmasse von der Startmasse mit Mo=15 t der Mondlandefähre verbleiben lediglich nur noch 4,2 t an Rüstmasse, die bereits mit der Materialrekonstruktion der Kabine (ca. 1,1 t), von Teilen der Außenzelle (ca. 1,3 t), und der deklarierten Zuladung (ca. 1,7 t), ohne Berücksichtigung des Gewichtes der Astronauten mit ihren Raumanzügen (400 kg) , der Masse für die Tanks und für die beiden Haupttriebwerke der Mondlandefähre (…) mit 600 kg weit überschritten wird. Insgesamt fehlten über 3 t Konstruktionsmasse, wie von der NASA ursprünglich angegeben und wie mit der Gesamtrekonstruktion des Lunamoduls von Apollo 11 eindrucksvoll und überzeugend belegt werden konnte.
    Weiterhin ist das Pendelverhalten der Fahne auf dem Mond äußerst verräterisch! Denn die Pendelperiode T, die sich physikalisch mit der Pendellänge l (l=0,7 m) und der Gravitationsbeschleunigung g (g= 9,81) zu

    T=2π√ l : g (11)

    errechnet, müsste auf dem Mond

    T= 6,28 *√ 0,7 m : 1,6 m/s² ≈ 4,2 s (12)

    betragen. In den TV-Filmdokumentationen beträgt die Periodendauer aber nahezu 2 s, so wie eben auf der Erde. Die exakte Berechnung der Periodendauer für die Erde ergibt präzise

    T= 6,28*√ 0,7 m/9,81 ≈ 1,7 s. (13)

    Dieser zeitliche Unterschied von 2,5 s ist gravierend! Außerdem müsste sich auf dem Mond eine leicht gedämpfte, periodische Schwingung ergeben, da auf dem Mond keine Atmosphäre vorhanden ist. Die wahrzunehmende Schwingung ist aber fast aperiodisch. Ergo: Die Dreharbeiten erfolgten also eindeutig auf der Erde!

    Die mechanische Instabilität der Mondlandefähre hätte eine intakte Mondlandung unmöglich gemacht! Jeder Mensch auf unseren Planeten hat bestimmt schon einmal einen missglückten Raketenstart gesehen, wenn die Rakete bereits einige Meter vom Starttisch abgehoben hat und die Triebwerke dann versagen und keine Leistung mehr erbringen. Infolgedessen bewegt sich die Rakete den physikalischen Gesetzen der Schwerkraft entsprechend wieder in Richtung der Startplattform und kippt dann aufgrund der mechanischen Instabilität einfach um, weil sich der Masseschwerpunkt gravierend verändert hat. Dies wäre auch das Schicksal der Mondlandefähre von Apollo 11 gewesen, weil kurz vor der Landung eine absolute Instabilität der Fähre bestanden hätte! Denn: Ganz grob gerechnet, hätte die aufsteigende Stufe kurz vor der Landung auf dem Mond noch ca. 5 t an Masse besessen und die absteigende Stufe hätte aufgrund des Treibstoffverbrauchs von 8 t lediglich nur noch rund 2 t an Rüstmasse gehabt. Da der Schwerpunkt der Landefähre kurz vor der Landung der Fähre auf dem Mond exakt bei 2,10 m über die Düsen gelegen haben muss, würden sich die Drehmomente wie 2,5 zu 1 bis 3: 1 verhalten haben. Damit hätte ein absolut instabiles mechanisches System vorgelegen! Jede noch so kleinste Erschütterung, wie Vibrationen durch das Triebwerk oder Druckschwankungen der ausströmenden Gase in der Düse des Triebwerkes hätten die Mondlagefähre einfach umkippen lassen! Eine Mondlandung wäre zwar „geglückt“, aber eine Rückkehr vom Mond wäre damit unmöglich gewesen. Da aber alle Akteure von Apollo 11 glücklicherweise das imaginäre Abenteuer überlebt haben, kann messerscharf geschlussfolgert werden, dass keine Mondlandung stattgefunden hat.
    Die Lösung des physikalischen Problems liegt darin, dass der Schwerpunkt einer Landefähre einfach auf Höhe der Düsen des Triebwerkes liegen muss, so wie die Chinesen dies im Dezember 2013 realisieren und praktizierten. Das Problem der Senkrechtlandung von Raketen hat man erst Ende 2015/Anfang 2016 mit der Falcon 9 gelöst!
    Ja und ca. 1 t Natriumperoxid wären für die dreiköpfige Besatzung für die Regeneration von Sauerstoff aus dem CO2 erforderlich gewesen!
    Immer wieder wird die Behauptung strapaziert und kolportiert, dass sich auf der Mondoberfläche Laserreflektoren mit einer Flächengröße von 0,46 *0,46 m² ≈ 0,21 m² befinden würden, die die Apollo-Astronauten auf dem Mond bei ihrer Expedition dort angeblich installiert hätten, so dass mit Lasern von der Erde aus diese Reflektoren angepeilt werden könnten, womit der indirekte Beweis für die angebliche Apollomissionen geführt werden kann. Dies ist physikalischer Blödsinn!

    Denn: Auch ein Laser besitzt eine gewisse Streuung, die minimal bei ca. 0,1 µm/m liegt. Dies bedeutet auf 384.401 km Erde-Mond-Entfernung (mittlere Distanz Erde -Mond) eine Streuung von rund 38,44 m (siehe auch Lindner, 1973). Wenn ein Laser-Signal, also ein Laser-Strahl die Tripel-Reflektoren treffen würde, dann könnte nur noch ein geringer Teil der ursprünglichen Energie von rund 0,21 m²: 38,44 m² ≈ 5,5*10-3 = 0,0055 vom Mond zur Erde zurück gelangen. Um sich diese Dimension konkret und bildlich zu verdeutlichen, sei folgendes dazu ausgeführt: Momentan liegt die Leistung von Hochenergielasern im kW-Bereich, wobei dann vom Mond aus nur noch eine Leistung von 5,5 Watt (zum Vergleich: eine Glühbirne hat beispielsweise 100 W Leistung) zurückgesendet werden könnte. Retour zur Erde würde der Strahl mit einer Mächtigkeit von 0,21 m² Fläche sich weiter extrem auffächern, so dass auf die Erdatmosphäre auftreffend, nur noch ein verschwindend geringes Signal mit einer ganz minimalen Leistung von 0,03 W registrierbar wäre, das von der Erdatmosphäre in jedem Falle völlig absorbiert werden würde. Im Klartext: auf der Erde würde kein Signal mehr vom ursprünglich ausgesendeten Lasersignal registrierbar oder nur noch ein natürliches Eigenrauschen des Lasers detektierbar! Übrigens: in der N 24 –TV-Sendung zu Apollo 11 am 14.11.2009 gegen 20.50 Uhr, wo dieses Laserverfahren zum Anpeilen der Tripel-Reflektoren auf dem Mond „demonstriert“ wurde, äußerte der Direktor der texanischen Sternwarte, Jerry Wiant süffisant, dass die Signale nicht vom Mond stammen, sondern vom Objektiv des Teleskops!

    P.S. Übrigens hatte der Autor den skeptischen Gedanken zur Instabilität der Mondlandefähre zur Mondlandung bereits im Sommer 1969 ganz spontan für ca. 1 s gehegt gehabt!

    Siegfried Marquardt, Königs Wusterhausen

    Liken

    Antworten
  2. Siegfried Marquardt

     /  4. Februar 2018

    Die Amerikaner haben sich selbst entlarvt: Apollo 11 war das größte Betrugsmanöver aller Zeiten!

    Jeder hat sich sicherlich bereits einmal gefragt, wie Neil Amstrong beim Ausstieg aus dem Mondlandemodul gefilmt werden konnte, wo er doch der erste Mensch auf dem Mond war. Nun des Rätsel Lösung: Am 27.11.2015 strahlte der TV-Sender ARTE unter der Rubrik „Verschollene Filmschätze“ Bilder und Filmsequenzen zu Apollo 11 und insbesondere zur Mondlandung aus. Als Neil Amstrong aus der Mondlandefähre ausstieg, wurde mit dem Öffnen der Luke eine Kamera oberhalb der Luke über Neil Amstrong aktiviert. Nun stellt sich die berechtigte Frage, wie Neil Amstrong dann seitlich von unten gefilmt werden konnte? Die Amis haben sich mit diesen Filmszenen selbst ins Knie geschossen! Apollo 11 war nach Beweislage der Amis (Beweisstück verschollener Film zu Apollo 11) das reinste Betrugsmanöver!

    Siegfried Marquardt, Königs Wusterhausen

    Liken

    Antworten
  3. Siegfried Marquardt

     /  4. Februar 2018

    Jetzt ist wissenschaftlich geklärt: Zum Mond und zurück benötigt man mindestens 56 Tage!
    Im Internet ist eine höchst interessante und brisante Arbeit mit dem Titel „Satellit im Kraftfeld Erde-Mond“ von dem Astrophysiker/Raumfahrexperten Prof. Dr. R. Kessler von der Fachhochschule Karlsruhe zu Flugbahnen und Flugzeiten von Satelliten von der Erde zum Mond und zurück aus dem Jahre 2011 publiziert worden (Kessler, 2011 bzw. http://www. home.hs-karlsruhe.de/≈kero0001/). Kessler hat im Jahre 2011 mit Rechnersimulation auf der Grundlage von sechs Differenzialgleichungen die Flugbahnen und Flugzeiten von Raumflugkörpern von der Erde zum Mond und zurück berechnet bzw. mathematisch modelliert /simuliert. Als Ergebnis seiner Berechnungen kam heraus, dass im Wesentlichen nur zwei äußerst komplizierte schleifenförmige Flugbahnen mit 6 Wendepunkten (sogenannte Librations – bzw. Lagrangepunkte, wo sich jeweils die Schwerkraft und Zentrifugalkraft aufhebt) mit Flugzeiten von 0,1522 Jahre (rund 56 Tage) und 0,6342 Jahre (ca. 7,6 Monate) existieren, die für die Raumfahrt überhaupt Bedeutung zukommt. Analoge Ergebnisse konnten die beiden Mathematiker Hans Joachim Oberle (2012/2013) und Oliver Ernst (2014/15) mittels der Lösung von Differenzialgleichungen übereinstimmend ableiten (………). Damit dürfte wissenschaftlich eindeutig geklärt sein, dass man nicht innerhalb von 8 Tagen von der Erde zum Mond und zurück gelangen kann, sondern hierfür mindestens 56 Tage benötigt. Apollo 11 bis N hat also niemals stattgefunden!
    Siegfried Marquardt, Königs Wusterhausen

    Liken

    Antworten

Es werden nur Kommentare freigeschaltet, die sich auf diesen/obigen Artikel beziehen, klare Aussagekraft haben, bzw. sinnvoll oder hilfreich für ALLE sind!

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden /  Ändern )

Google Foto

Du kommentierst mit Deinem Google-Konto. Abmelden /  Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden /  Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden /  Ändern )

Verbinde mit %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d Bloggern gefällt das: